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ABSTRACT

The importance of forecasting extreme wet and dry conditions from weeks to months in advance relies on

the need to prevent considerable socioeconomic losses, mainly in regions of large populations and where

agriculture is a key value for the economies, such as southern South America (SSA). To improve the un-

derstanding of the performance and uncertainties of seasonal soil moisture and precipitation forecasts over

SSA, this study aims to 1) perform a general assessment of the Climate Forecast System, version 2 (CFSv2),

soil moisture and precipitation forecasts against observations and soil moisture simulations based onGLDAS,

version 2.0; 2) evaluate the ability of CFSv2 to represent wet and dry events through the forecasted stan-

dardized precipitation index (SPI) and standardized soil moisture anomalies (SSMA); and 3) analyze the

capability of a statistical methodology (merging observations and forecasts) in representing a severe drought

event. Results show that both SPI and SSMA forecast skill are regionally and seasonally dependent. In

general, a fast degradation of the forecasts skill is observed as the lead time increases, resulting in almost no

added valuewith regard to climatology at lead times longer than 3months. Additionally, a better performance

of the SSMA forecasts is observed compared to SPI calculated using three months of precipitation (SPI3),

with a higher skill for dry events against wet events. The CFSv2 forecasts are able to represent the spatial

patterns of the 2008/09 severe drought event, although it shows crucial limitations regarding the identification

of drought onset, duration, severity, and demise, considering both meteorological (SPI) and agricultural

(SSMA) drought conditions.
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1. Introduction

Extreme climate events are one of the most costly

natural disasters in southern South America (SSA), a

region that is prone to experience prolonged drought

events and flooding episodes that can even cause human

casualties. Within the regions of SSA affected by these

extremes lies the La Plata basin (LPB), a reservoir of

enormous biological wealth in which agriculture is the

main economic activity. The region is vulnerable to

several types of precipitation extremes spanning a wide

range of temporal and spatial scales (Carril et al. 2016)

that can produce flooding in certain areas (Cavalcanti

2012). Conversely, periods of extremely dry conditions

affect the agriculture and undermine the water re-

sources needed for hydroelectric power (Cavalcanti

et al. 2015).

Several works have addressed the relationship be-

tween local and remote forcings on droughts and flood

events in LPB. Previous studies have reported the

prevalence of humid conditions (i.e., excess of pre-

cipitation) over LPB during the warm phase of El Niño–
Southern Oscillation (ENSO) while dry conditions are

observed during the cold phase (Grimm et al. 2000;

Fraisse et al. 2008; Penalba and Rivera 2016). On the

other hand, Mo and Berbery (2011) mention that local

influences, like soil moisture and atmospheric moisture

transport, provide the frame for extreme events to per-

sist and evolve with more intensity. In particular, soil

moisture is a key variable of the earth–atmosphere

system that not only reflects the soil conditions of a

given region (e.g., as an indicator of agricultural

droughts), but also has the potential to influence the

atmospheric variability by controlling the water and

energy balances at the surface, from synoptic to seasonal

time scales (e.g., Kanamitsu et al. 2003; Betts 2009;

Seneviratne et al. 2010). For instance, the coupling

strength between soil moisture, evapotranspiration, and

temperature shows a hot spot over LPB (Ruscica et al.

2015; Spennemann and Saulo 2015; Sörensson and

Menéndez 2011), which might explain some degree of

local control over precipitation variability.

The importance that wet and dry events have on so-

cioeconomic activities has motivated the development

of drought monitoring and prediction tools (e.g., Dutra

et al. 2014a,b; Yoon et al. 2012, hereafter Y12). In this

sense, the standardized precipitation index (SPI; McKee

et al. 1993) has been recommended by the World Me-

teorological Organization (WMO) as a reference

drought index. The SPI is widely used for drought defi-

nition andmonitoring due to its simplicity and flexibility,

given that it is based only on precipitation data and can

be calculated on any time scale. In this context, Y12

developed a method that combines 3 and 6 months of

forecasted precipitation with observations to generate

predictions of SPI over the United States using the

National Centers for Environmental Prediction (NCEP)

Climate Forecast System, version 1 (CFSv1; Saha et al.

2006). They found that the forecast performance

strongly depends on the region and the season. Also, for

the first 3-month forecast the skill comes mainly from

the observations and then it drops, which limits its

practical usefulness once that period is exceeded. On the

other hand, recent studies use simulated soil moisture

fields to monitor and predict drought conditions (Zhang

et al. 2017). Soil moisture simulations represent the

physical mechanisms of water and energy balances in

the soil and at the surface, including the interactions

with the vegetation. In this sense, Dirmeyer (2013) an-

alyzes the performance of the soil moisture NCEP Cli-

mate Forecast System, version 2 (CFSv2; Saha et al.

2014), ensemble mean forecasts against Climate Fore-

cast System Reanalysis (Saha et al. 2010), which is used

as the initial condition of the CFSv2. The author docu-

ments that precipitation forecasts are in general more

accurate in areas where there are larger soil moisture

anomalies at the initial stage, concluding that the CFSv2

forecast skill for soil moisture is higher and for a longer

time than for precipitation. Despite the fact that both

approaches—drought monitoring through SPI or

through simulations—have been extensively used

worldwide, their potential use in regions like SSA has

not yet been addressed.

The abovementioned assessments are limited to the

number of in situ soil moisture observations, a factor

that stands out in South America (see Dorigo et al. 2013,

their Fig. 1). Instead of direct observations, several

studies used the SPI as a proxy for soil moisture varia-

tions (Mueller and Seneviratne 2012), or soil moisture

estimations derived from a combination of satellite mi-

crowave sensors (Wagner et al. 2012). In this context,

the study by Spennemann et al. (2015) assesses the

variability and physical consistency between the Global

Land Data Assimilation System (GLDAS; Rodell et al.

2004) standardized soil moisture anomalies (SSMA)

against the SPI and multisatellite soil moisture estima-

tions over SSA. They conclude that the simulation of

GLDAS, version 2.0 (GLDAS-2.0), is a useful tool to

describe soil moisture anomalies over SSA and can be

employed to develop soil moisture indices for agricul-

tural production management. These findings provide

the opportunity to evaluate soil moisture forecasts using

GLDAS dataset, a strategy on which the present work is

based. However, it is important tomention thatGLDAS

should not be considered as the ground truth soil
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moisture, but as a reference soil moisture condition

based on our previous studies over this region of South

America.

The latter studies open a line of research regarding the

potential for soil moisture predictions in a region where

agriculture is a fundamental part of the economy. The

main goal in this study is to evaluate the possible ad-

vantages of using SSMA against SPI forecasts, with

emphasis on wet and dry events. This evaluation will be

performed against simulated soil moisture and observed

precipitation using different verification metrics. Then

the performance of CFSv2 will be evaluated in detail for

the 2008/09 severe drought. This assessment will in-

corporate the methodology developed by Y12, that is,

merging in this case simulations with forecasted SSMA.

This study will help to determine if the quality of SSMA

forecasts is higher than that of precipitation forecasts, a

result that could have potential benefits for the agri-

cultural practices of the region. The structure of the

paper is the following: section 2 describes the different

datasets and the region of study, section 3 describes

the metrics used for the forecast assessment and the

application of Y12 methodology, section 4 exposes the

results, and section 5 presents the discussion and

conclusions.

2. Study area and data

The study focuses on the southern portion of LPB,

also called southeastern South America (SESA; 358–
258S, 638–508W). The region encompasses the southern

portion of Brazil and Paraguay, Uruguay, and the

northeastern portion of Argentina, including the

Pampas region, one of the most productive soils of

the world (Penalba and Bettolli 2011).

NCEP developed the CFSv2, a fully coupled

land–ocean–atmosphere dynamical seasonal prediction

system, which became operational in March 2011

(Saha et al. 2014). The CFSv2 improved the model pa-

rameterizations and assimilation systems and increased

the spatial resolution with respect to the previous ver-

sion of the Climate Forecast System (Mo et al. 2012;

Saha et al. 2014). Both versions of the Climate Forecast

System were widely used for seasonal forecasting ap-

plications considering variables such as 2-m temperature

and precipitation (Wang et al. 2010), sea surface tem-

perature (Kumar et al. 2012), and soil moisture

(Mo et al. 2012). In this study, the retrospective 9-month

CFSv2 forecasts from January 1982 to December 2010

were used. The reforecasts consist of 24 ensemble

members (28 for November) initiated every fifth day, for

all four cycles of each day (0000, 0600, 1200, and 1800

UTC). The CFSv2 spatial resolution was interpolated to

GLDAS-2.0 (18 3 18) regular latitude–longitude grid.

The evaluation focuses on the complete set of forecast

lead times (from 0 to 9 months), although special at-

tention will be given to the ensemble mean lead times 0,

1, 2, and 5 (F0, F1, F2, and F5, respectively). Lead times

0–2 are chosen for the evaluation assuming that the

model will have the highest performance during the

early leads. The notation for the lead times 0–9 or F0–F9

correspond to the 0–1/9–10 month mean value of the

forecast.

The reference soil moisture is based on GLDAS-2.0

(18 3 18) monthly simulations, which use the Noah land

surface model (LSM), version 3.3 (Ek et al. 2003). The

CFSv2 also uses the Noah LSM, making the analysis

compatible (i.e., same soil depths and dynamics). The

root zone layer (RZ; 0–100 cm) was considered to cal-

culate the SSMA for the evaluation of the soil moisture

forecasts and the identification of agricultural drought

conditions, based on the agreement between RZ SSMA

and SPI3 and SPI6 (where 3 and 6 refer to the number of

months of precipitation used to calculate SPI) shown in

Spennemann et al. (2015). The SSMA is calculated for

each grid point (i, j) as

SSMA(i, j, t)5 fSM(i, j, t)2mean[SM(i, j, t
month

)]g/std dev[SM(i, j, t
month

)], (1)

where tmonth corresponds to each month (i.e., January–

December), std dev is the standard deviation, and SM is

the soil moisture. Thus, for each month the mean value

of that month is subtracted and then divided by its cor-

responding interannual variability.

The observational precipitation dataset was obtained

from the Global Precipitation Climatology Centre

(GPCC) full data reanalysis, version 7, at 1.08 grid res-

olution (Schneider et al. 2015). Figure 1 shows the spa-

tial distribution of the mean monthly RZ soil moisture

values over the region under study. Higher values are

located in central and eastern portions of Argentina and

Paraguay, southern Brazil, and Uruguay, ranging from

280 to 350mm, favoring rain-fed agriculture over that

region. The spatial distribution of mean monthly pre-

cipitation amounts is similar to that for soil moisture,

with regions with over 140mm located in the north-

eastern part of the study area.

The SPI was calculated using the GPCC dataset con-

sidering precipitation accumulated over 3 and 6 months.
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The SPI3 and SPI6 were chosen because they are cur-

rently used tomonitor dry andwet conditions by different

institutions [e.g., Climate Prediction Center (CPC) and

Servicio Meteorológico Nacional—Argentina (SMN)].

Also, temporal variability depicted by SPI3 and SPI6 is

in agreement with that for SSMA based on GLDAS-2.0

over the same region (Spennemann et al. 2015). Fol-

lowing Penalba and Rivera (2015) for the calculation of

the SPI, the accumulated precipitation time series were

divided in 12 monthly series of 29 years, and each of

them were fitted to a gamma probability density func-

tion. The 12 probability density functions for each time

scale were translated to 12 cumulative density functions.

Finally, an equiprobability transformation from the

cumulative density functions to the standard normal

distribution with mean of 0 and variance of 1 were

performed to obtain the SPI.

When considering the CFSv2 data, forecasted SPI3

was calculated based on the accumulation of pre-

cipitation using F0 1 F1 1 F2 for each month. For ex-

ample, for April 1982 the forecast of February 1982

(F0) 1 March 1982 (F1) 1 April 1982 (F2) was accu-

mulated to construct the SPI3 forApril 1982. Then it was

compared to the observed SPI3 (based on GPCC data).

In this way, the accumulation over different lead times

of a single forecast is used. The same criterion is applied

to build up the SPI6, considering the accumulation of

precipitation from F0 to F5.

3. Methodology

Model ensemble mean performance is evaluated

through the computation of the root-mean-square error

(RMSE), the anomaly correlation coefficient (ACC),

the mean square skill score (MSSS), and the relative

operating characteristic (ROC). The RMSE has been

used as a standard statistical metric to measure model

performance in meteorology, air quality, and climate

research studies (Chai and Draxler 2014). The RMSE

gives an indication of the mean deviation of the esti-

mated values F compared to the magnitude of the esti-

mated parameter O, defined as

RMSE(i, j, t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

t51

[F(i, j, t, t)2O(i, j, t)]2

s
, (2)

where i and j represent latitude and longitude and the

summation is over time t (1:N) for a specific forecast lead

time t (0–9 months). The RMSE gives information

about the average magnitude of the forecast errors, as-

signing greater weight to the larger errors.

The ACC is one of the most widely used measures in

the verification of spatial fields (Jolliffe and Stephenson

2011), regarded as a skill score relative to the climate:

ACC(i, j, t)5
�
t

F 0(i, j, t, t)O0(i, j, t)�
�
t

[F 0(i, j, t, t)]2�
t

[O0(i, j, t)]2
�1/2

, (3)

where i and j correspond to the grid position, the

summation is done over time t for a specific forecast

lead time t, and the prime denotes the temporal

anomaly after removing the mean annual cycle. The

ACC can also be calculated over space and for a

specific month of the year, that is, ACC(month, t). As

detailed in Becker et al. (2013, hereafter B13),

the AAC returns a number between 21.0 and 1.0,

where 1.0 refers to a perfect forecast and 0 to a ran-

dom forecast. The ACC significance was assessed

through a bootstrap resampling procedure (Efron and

Tibshirani 1993), based on 1000 resamples for a 95%

confidence interval.

TheMSSS is essentially the mean square error (MSE)

of the forecasts compared to the standard deviation of

the variable for a grid point (i, j), given by

FIG. 1. (top) Climatological mean RZ soil moisture monthly

values (mm) and (bottom) average accumulated monthly pre-

cipitation (mm) over 1982–2010.
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MSSS(i, j, t)5 12
MSE

i,j,t

MSEc
i,j

, (4)

where

MSE5
1

N
�
N

t51

[(F
i,j,t,t

2O
i,j,t
)2 (F

i,j,t,t
2O

i,j,t
)]2 (5)

and

MSEc5
1

N
�
N

t51

(O
i,j
2O

i,j
)2, (6)

where the letter c in MSEc represents the climatology.

Values of MSSS higher (lower) than 0 mean that the

forecast error is lower (higher) than the standard de-

viation of the variable.

The ROC curves are useful for assessing the accuracy

of predictions, measuring the ability of the forecasting

system to discriminate between events (wet and dry) and

nonevents. For the definition of SPI and SSMA dry and

wet events, we considered a threshold of plus/minus one

standard deviation for the observed and forecasted time

series. This threshold, in the case of the SPI, defines

droughts and excess conditions (Penalba and Rivera

2015). The ROC curves are constructed plotting the hit

rate (HR) against the false alarm rate (FAR). The HR

and FAR indicate the proportion of events forecasted

correctly and the proportion of nonevents incorrectly

forecasted, respectively. Different thresholds were fixed

in order to provide the dichotomous wet/dry or nonwet/

dry predictions, resulting in 100 pairs of (FAR, HR).

The area under the ROC curve is commonly used as a

metric representing the skill of the forecast system. The

area is standardized against the total area of the figure,

such that a perfect forecast has an area of 1 and a curve

lying along the diagonal (no information, HR 5 FAR)

has an area of 0.5 (Dutra et al. 2014b).

Before applying any metrics to the SSMA and SPI

forecasts, it was necessary to correct the systematic er-

rors (i.e., bias) of the model, to highlight the skillful part

of the forecast (B13). Thus, the forecasted soil moisture

and precipitation anomalies were constructed subtract-

ing, for each different lead time and month, the corre-

sponding forecasted climatology as described in B13.

The 2008/09 drought event is further analyzed fol-

lowing Y12. First, a bias correction based on the

1982–2006 forecast climatology is applied to the CFSv2

forecasts initialized in November 2007. Then, the CFSv2

SSMA from November 2007 to August 2008 is added to

each of the corresponding months of the GLDAS-2.0

1982–2006 mean annual cycle. These new 10-month soil

moistures (CFSv2 1 GLDAS-2.0) are appended to

GLDAS-2.0 from January 1980 to October 2007, and

finally the SSMA is calculated based on this new com-

bined dataset. This calculation is applied to the ensemble

mean and to the 24 members of the ensemble.

4. Results

a. General evaluation of CFSv2 SSMA and SPI
forecasts

The ACC of the CFSv2 ensemble mean SSMA and

precipitation forecast as a function of the lead time and

the target month averaged over the domain is shown in

Fig. 2. ACC values higher than 0.4 are significant at the

95% confidence level. ACC is higher for SSMA com-

pared to precipitation for each month and lead time,

which highlights the reason while variables/indices with

stronger memory (i.e., persistence), like SSMA and SPI

(3–6) are used for agricultural drought monitoring in-

stead of using just precipitation. In addition, the ACC

for SSMA is significant for all forecast months at lead

0 month, with values from 0.4 up to 0.7, and is significant

for 5 months (target month: April–August) at 1-month

lead time. For the winter season, SSMA presents the

highest skill with significant ACC values up to 2-month

lead time. The higher skill achieved by CFSv2 during

winter over South America was also observed in other

studies using precipitation (B13). Finally, the lack of

skill of CFSv2 for monthly precipitation over SESA

should be pointed out, as ACC is below 0.2 for most of

the forecast months and lead times.

An evaluation of forecasted SSMA, SPI3, and SPI6

spatial representation based on the CFSv2 ensemble

mean was carried out. Figure 3 compares for the same

verifying date/months the spatial pattern of ACC for

each grid point for the SSMA, SPI3, and SPI6 forecasted

at different lead times: 0, 1, 2, and 5months. As the SPI is

calculated using the accumulation over different fore-

cast lead times, depending on the SPI time window, the

comparison of SSMAagainst SPI3 is only possible for F2

onward and against SPI6 for F5 onward. For instance,

SPI3 needs three months of precipitation to perform the

accumulation (e.g., F0 1 F1 1 F2). For SSMA, ACC at

lead 0 showsmaximum and statistically significant values

over Uruguay (.0.6), southern Brazil, and central and

eastern Argentina and nonsignificant values elsewhere. For

F1 (lead 1) the SSMA ACC is lower than for F0, being

significant only over east-central Argentina and over parts

of Uruguay. In general, as the lead time increases, a fast

degradation of the SSMA and SPI3 skill is observed. The

SSMA ACC values, for example, decrease from 0.4 for F1

to 0.3 in the case of F2 and 0.1 for F5 (see Fig. 3). In par-

ticular, for longer lead times (i.e., F5),ACC is nonsignificant
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everywhere for SSMA and SPI3, and even negative for

SSMA over some grid points.

In contrast to the region where SSMA ACC maxi-

mizes, the ACC values for SPI3 (F2) and SPI6 (F5)

forecasts maximize over southern Brazil. The SPI6

shows higher ACC values compared to SPI3 (F5) and

SSMA (F5). This can be attributed to the higher auto-

correlation of SPI6 due to the accumulation of pre-

cipitation over a larger period of time.

The lack of skill for longer lead times was also docu-

mented by other studies analyzing the performance of

the CFSv2 forecasting different hydrometeorological

variables (e.g., Dirmeyer 2013; Dutra et al. 2014b;

Siegmund et al. 2015). In this case, the ACC results

highlight some potential advantages of SSMA over SPI3

for particular regions. A possible explanation for these

regional differences in the performance of CFSv2 for

SSMA and SPI3 might be in part related to differences

between GLDAS-2.0 and GPCC precipitation datasets

[e.g., see Fig. 3 of Spennemann et al. (2015)]. But, the

comparison of the CFSv2 precipitation forecast against

both GLDAS-2.0 and GPCC precipitation shows a

similar spatial pattern and range of ACC values (Fig. 4),

suggesting that the differences in skill observed are not

related to the CFSv2 performance for precipitation. In a

similar way to the ACC analysis, the RMSE for the dif-

ferent forecast indices shows that, in general, for all lead

times, the SSMAforecast errors are smaller than SPI3 over

central Argentina (not shown). The areas with larger

RMSE values (typically higher than 1.4mm) are located

over the areas with nonsignificant ACC values in Fig. 3.

In summary, the forecast skill analysis reveals that the

CFSv2 SSMA forecast exhibits a better performance

over central Argentina compared to SPI3 based on the

ACC and RMSE metrics. On the other hand, the per-

formance of SPI6 shows higher skill than SSMA (F5)

over southern Brazil and a similar behavior over a few

grid points over central Argentina and Uruguay. The

better skill can also be attributed to the higher auto-

correlation of SPI6 compared to SSMA. The regional

SSMA and SPI differences are not related to differences

in the precipitation datasets.

b. CFSv2 performance: Seasonal, wet, and dry events

To further document and understand seasonal dif-

ferences in the SSMA spatial skill, the mean ACC was

computed for the austral summer [i.e., target months of

December–February (DJF)], autumn [March–May

(MAM)], winter [June–August (JJA)], and spring

[September–November (SON)] (Fig. 5, left) with initial

conditions fromNovember, February,May, andAugust,

respectively (that is, lead 1–3 months). To complement

this analysis, the spatial distribution of the mean MSSS

(Fig. 5, right) was also calculated. The winter season

presents the highest percentage of grid points at ACC.
0.4 with 36.6%, located in the center of the domain,

followed by spring, with 33.7%.Meanwhile summer and

autumn show the lowest percentages, both with 18.2%.

However, the range of values across the domain changes

among the seasons. For example, summer shows a

higher ACC mean value (ACC 5 0.28) than autumn

(ACC 5 0.25), while the maximum mean ACC values

are in winter (ACC 5 0.37) and spring (ACC 5 0.33).

The spatial distribution of the MSSS shows positive

values over the areas where ACC maximize in each of

the seasons. On the other hand, negative MSSS values

are distributed among the regions with nonsignifi-

cant ACC values, indicating higher forecasted MSE

FIG. 2. Area-averagedACC for CFSv2 ensemblemean forecast of (left) SSMA (against GLDAS-2.0) and (right)

precipitation (against GPCC). The x axis shows the target month, and the y axis shows the forecast lead times

(months; where number 0 corresponds to F0 and so on).
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compared to the observed standard deviation. In turn,

the ensemble MSSS shows lower values for summer–

autumn than in winter–spring. This result denotes that

seasonal forecasts do not provide valuable information,

except over limited areas.

The ability of CFSv2 to predict the observed wet or

dry events is further evaluated through ROC curves.

These events were defined as the periods of time ex-

ceeding plus/minus one standard deviation, considering

the regional time series of SSMA, SPI3, and SPI6. For

instance, 22 wet events and 24 dry events were obtained

for the SPI3, with average durations between 2 and

3months. In the case of SPI6, the effect of increasing the

time scale—that is, accumulating a larger number of

monthly precipitation totals—led to a decrease in the

analyzed wet and dry events (15 and 14 events, re-

spectively) and an increase in its mean duration (be-

tween 3 and 5 months). For each variable—SSMA (F0,

F2, and F5), SPI3 (F0–F2 and F3–F5), and SPI6 (F0–

F5)—we computed the ROC curve for all the grid points

in the domain and the entire period (Fig. 6). In all cases

the area under the ROC curve decreases with lead time,

which means that the forecasts are less able to discrim-

inate between occurrences and nonoccurrences of the

wet or dry event as lead time increases. For F0, F2, and

F5 lead times, SSMA ROC area is higher for dry events

than for wet events. Even when the performance of the

F2 forecast showed in general a low ACC and a high

RMSE, the ROC curves for SSMA dry and wet events

show some skill, with the curves bending above the

FIG. 3. ACC of CFSv2 ensemblemean forecast for (top) SSMA, (middle) SPI3, and (bottom) SPI6. For SSMA, forecast lead times are F0,

F2, and F5. For SPI3, the lead times span from F0 to F2 and from F3 to F5. For SPI6, the lead times span from F0 to F5.
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diagonal—that is, the HR exceeds the FAR. For SPI3

and SPI6, the ROC curves also show higher pre-

dictability for the dry events, except when using lead

times F3–F5 for SPI3.

The comparison between SSMA and SPI3 (F0–F2)

forecast shows that, in general, the SSMA skill for dry

events is higher than the skill of SPI3. But, for longer

lead times, SSMA (F5) and SPI3 (F3–F5) both show the

same skill for dry events. Moreover, the SPI6 shows

higher predictability for dry events compared to SSMA

(F5) and SPI3 (F3–F5) forecasts. The latter result is in

agreement with theACC analysis, which is related to the

accumulation of precipitation for longer time scales.

This accumulation acts as a low-pass filter, increasing the

persistence of dry and wet events, which leads to fore-

casts that provide more valuable information. Based on

this assessment, SSMA forecasts show an added value

for the first few months compared to the SPI forecasts,

particularly for dry events.

c. Case study: The 2008/09 drought

In this section, the performance of CFSv2 in fore-

casting the 2008/09 drought event based on SSMA is

analyzed. This drought event was severe in terms of in-

tensity and spatial extension, related to a combination of

La Niña conditions with large tropical North Atlantic

warm sea surface temperature anomalies (Müller et al.
2014). It was the fourth most severe meteorological

drought event in the 1980–2010 period after the 1988/89,

1996, and 2004 events. However, considering that the

SSMA is indicative of agricultural drought occurrences,

this drought event was characterized by the lowest

SSMA value on record. The temporal evolution of the

SSMA and SPI3 averaged over SESA (Fig. 7) shows

good agreement between both indices (r 5 0.75, p ,
0.001), as previously shown by Spennemann et al.

(2015), a fact that is also observed considering the SPI6

(r 5 0.81, p , 0.001, not shown). The figure also shows

that from both meteorological (SPI3) and agricultural

(SSMA) points of view, the 2008/09 drought event

reached severe conditions (SPI3 and SSMA less than or

equal to 21.5) during 2009 winter. The temporal evo-

lution also shows three relative minima in both indices

between 2008 and 2009. Moreover, the difference be-

tween SPI3 and SSMA during the end of the drought

event shows that the recovery in terms of precipitation is

faster than the response in terms of soil moisture

anomalies, with a lag of approximately three months

between the two variables.

Three characteristics of the CFSv2 SSMA forecasts

were analyzed: 1) the determination of the onset of the

drought event, 2) the representation of the persistence,

and 3) the ability in terms of capturing the severity

during the peak in winter 2009. Figure 8 shows the

evolution of CFSv2 ensemble mean and individual

members’ SSMA forecasts for three different initial

dates (October 2007, May 2008, and February 2009),

after applying Y12 methodology. The representation

of the onset of the drought event, analyzed from

November 2007 to August 2008 (10 forecasted months,

Fig. 8a), reveals that the dispersion increases rapidly

with forecast length, being approximately constant after

February 2008 (i.e., drifting to its own climatology). This

can be linked to the increase in the dispersion—that is,

negative MSSS over larger areas—observed in the spa-

tial analysis during summer and autumn seasons (Fig. 5).

During the first forecasted month, most of the members

show an increase in SSMA, opposite to what was ob-

served with GLDAS-2.0 data. The following six fore-

casted months are in line with the occurrence of a dry

pulse but neither the intensity nor the timing of the

drought are accurately forecasted by the CFSv2 en-

semble. Regarding the persistence of this drought event,

forecasts initialized during the development of the event

FIG. 4. ACC for F0 CFSv2 precipitation forecast against (left) GLDAS-2.0 and (right) GPCC precipitation data-

bases over the 1982–2010 period.
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FIG. 5. CFSv2 ensemble mean SSMA forecasts of (left) mean seasonal ACC and (right) seasonal MSSS.

Seasonal forecasts are constructed with CFSv2 F1, F2, and F3 lead times initialized the month before each

corresponding season.
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(May 2008) tend to progress rapidly toward nearly

normal conditions, while the observations show a slight

recovery until October 2008 (Fig. 8b), in line with an

increase in precipitation as shown in the SPI3 time series

(Fig. 7). Nevertheless, observations show that the dry

event persisted for several months, reaching values of

SSMA lower than 21.0 during the summer of 2008.

A final and relevant aspect to be assessed is the skill

in the representation of the maximum severity peak

between autumn and winter of 2009 (Fig. 8c). It can

be observed that both the ensemble and the individual

members initialized in January 2009 show a sharp in-

crease in the SSMA values from February to March

2009, from 20.68 to 0.23 considering the ensemble

(Fig. 8c). The ensemble for the forecasted months

fromMarch to November 2009 shows values around 0.4,

while the individual members exhibit larger dispersion

between May and August, mostly with positive SSMA

values. Conversely, observations show that the peak of

the drought severity occurs during May 2009, reaching a

value of 21.96 and six consecutive months with SSMA

below 21.0, which is not reproduced by CFSv2. Only

two members show a peak with values lower than 21.0,

but neither the timing nor the severity are accurately

estimated. As previously shown in Fig. 5, autumn was

characterized by lowACC values and a large proportion

of negativeMSSS values, which might be reflected in the

behavior observed in Fig. 8c.

FIG. 6. ROC curves for wet (blue line) and dry (red line) conditions for (top) SSMA, (middle) SPI3, and (bottom) SPI6. For SSMA,

forecast lead times are F0, F1, and F2. For SPI3, the lead times span fromF0 to F2 and fromF3 to F5. For SPI6, the lead times span fromF0

to F5. Wet and dry events are based on the 1.0 and 21.0 thresholds, respectively.
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In addition to the evaluation of the performance in

forecasting the temporal evolution, the ability of CFSv2

to capture the SSMA spatial features/patterns of the

event was analyzed at each stage (onset, persistence, and

maximum intensity). Figure 9 shows the spatial distri-

bution of the 3-month average SSMA values from

GLDAS-2.0 (Fig. 9, left) for DJF 2007/08, July–

September (JAS) 2008, and April–June (AMJ) 2009,

compared with the CFSv2 forecast, after applying Y12

methodology, for those periods initialized in October

2007, May 2008, and February 2009, respectively. The

SSMA forecast is able to represent the spatial dry con-

dition of the onset (Fig. 9, top); forecasting the relative

minimum over Uruguay and southern Brazil, but the

severity of the drought is underestimated. The spatial

features of drought persistence are captured accurately

(Fig. 9, middle), especially over central Argentina, al-

though the severity is still underestimated. The un-

derestimation of the drought intensity observed at both

stages of the analysis is in agreement with Fig. 8. Re-

garding the maximum drought severity, CFSv2 SSMA

forecast is far from reproducing both the location and

intensity of drought during June 2009, even forecasting

wet conditions over the northeast portion of the domain

(Fig. 9, bottom). This result is in line with the temporal

evolution of both the ensemble and most of the indi-

vidual members (Fig. 8c), progressing toward wet con-

ditions while observations show an intensification of

drought conditions, both in temporal and spatial scales.

5. Discussion and conclusions

This study assessed the performance of the CFSv2 in

forecasting three commonly used drought indices rele-

vant to agricultural activities (SSMA, SPI3, and SPI6)

over SSA. The CFSv2 forecast performance was

evaluated for the 1982–2010 period considering the

general and seasonal behavior of the indices. Then,

the analysis focused on overall dry and wet events, and

particularly on the 2008/09 extreme drought event

that affected SSA.

For each month and lead time considered, SSMA are

better forecasted than precipitation. This result confirms

the value of variables/indices with stronger memory

(i.e., persistence), like SSMA and SPI rather than pre-

cipitation for drought monitoring. The predictive skill of

SSMA and SPI3 declines with increasing lead time, be-

ing nonsignificant for lead times longer than three

months. The longer time scale used to calculate the SPI

adds autocorrelation to the time series, which results in a

better performance of the forecasts for the SPI6 in

comparison with SPI3 and SSMA. The highest signals

for SSMA and SPIs are located over different regions

within SSA, being highest over Uruguay and central

Argentina (southern Brazil) for SSMA (SPI).

These results open the question of whether this dis-

similar behavior between the SSMA and SPI forecasts is

related to the precipitation datasets used inGLDAS-2.0,

different from those used for SPI calculations. Results

showed that the regional differences are not related to

differences in the precipitation dataset. Then, the re-

gional differences in skill between SSMA and SPI might

be linked to 1) a stronger persistence of SSMA com-

pared to the SPI3 over particular regions and 2) the

usage of Noah LSM by both CFSv2 and GLDAS-2.0,

thus reflecting the impact of the soil model on these

results. Further studies using different datasets and nu-

merical experiments to analyze the physical mechanism

that has taken place (e.g., the role of evapotranspira-

tion) are needed to clarify this issue. As this type of

analysis was beyond the scope of this study, the results

found here should motivate future studies focusing on

these regional differences.

A strong seasonality of the SSMA forecasts skill was

observed, showing a better performance for austral

winter than for summer. Thus, the better performance

for the winter season can provide, for example, more

valuable information for regional (i.e., in relation with

FIG. 7. Temporal evolution of SPI3 and GLDAS-2.0 SSMA averaged over SESA (1980–2010).

The gray shading indicates the 2008/09 drought event.
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FIG. 8. Evolution of CFSv2 SSMA forecasts for three different initial dates: (a)October 2007,

(b) May 2008, and (c) February 2009. The black line represents GLDAS-2.0 SSMA based on

the 1982–2010 period. The thick red line represents the CFSv2 ensemble mean, while the thin

red lines correspond to each of the 24 CFSv2members. Forecasts were corrected followingY12

methodology (see text).
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18 3 18 spatial resolution) planning of wheat crops over

SSA than for summer crops (e.g., soybean). In addition,

given that this region is characterized by strong in-

teractions between soil moisture and surface variables

(e.g., 2-m temperature), which maximize during sum-

mer, the lower SSMA forecast signal during this season

might be translated into the forecast of surface variables,

thus degrading CFSv2 forecast performance.

In general, a higher skill of SSMA and SPI for dry

events was observed compared to wet episodes. This

result can be attributed, in the case of SPI, to a large

number of correct zero precipitation forecasts matching

in time the precipitation observations. Also, as in the

case of the ACC, the effect of autocorrelation of SPI6

led to better metrics when compared with the SPI3 re-

sults. In the case of SSMA, it showed a higher skill of

FIG. 9. (left) Spatial features of GLDAS-2.0 SSMA mean value for (top) DJF 2007/08, (middle) JAS 2008, and

(bottom) AMJ 2009. (right) Y12 methodology applied to the mean values of F1, F2, and F3 initialized in (top)

November 2007, (middle) June 2008, and (bottom) March 2009. The GLDAS-2.0 SSMA is based on 1982–2010

climatology.
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SSMA forecasts for dry and wet events compared to

SPI3 and lower skill compared to SPI6 only for the

dry events.

Despite the fact that CFSv2 is able to discriminate

between the occurrence or not of dry events, the as-

sessment of the 2008/09 extreme drought event showed

that the CFSv2 ensemble forecasts have strong limita-

tions regarding the identification of the onset, duration,

severity, and demise of the event, based on the fore-

casted SSMA derived following the methodology pro-

posed by Y12. While the temporal evolution of the

negative anomalies of SSMA was underestimated in all

stages, the spatial patterns of SSMA derived from this

methodology, except for the most severe months, were

represented in an accuratemanner. As stated inY12, the

CFSv2 model is able to capture the impact of ENSO on

precipitation only when the initial conditions already

contain the ENSO signal. In this case, the drought event

was related to La Niña conditions that extended from

July–September 2007 to May–July 2008, followed by

cold SST anomalies but neutral conditions until

March–May 2009. Therefore, this might partially ex-

plain the poor performance of CFSv2 forecasts on re-

producing the maximum drought intensity, which was

observed between autumn and winter of 2009, after a La

Niña event. However, neither the onset nor the persis-

tence were reproduced accurately, even under a clear

signal of La Niña. A potential limitation of the Y12

methodology is that it requires at least 30 years of data

and a representative spatial coverage, which in some

regions, like the one under analysis, is difficult to

achieve. This limitation can prevent the assessment of

past severe wet or drought events like those observed

during 1986 or 1988/89 and can degrade the skill

achieved by CFSv2. Moreover, considering that lead

times longer than three months do not have forecast

skill, their inclusion in the calculation of the Y12

methodology can degrade forecast performance. Nev-

ertheless, the adaptation of Y12 methodology to SSMA

ensemble forecasts showed some added value, in par-

ticular when the regional average series are used in

combination with the spatial analysis.

The results documented in this study show the added

value for considering SSMA for agricultural drought

monitoring and forecasting in combination with the

commonly recommended SPI. Both indices complement

each other in a regional/spatial perspective, as each one

maximizes its skill over different regions. However,

before agricultural planning studies can be carried out

based on this forecast system, further evaluations are

needed, as it is not straightforward yet if the use of these

seasonal indices can be determining in, for example, a

sowing planning strategy. Last, the potential use of the

information derived from the seasonal forecast must be

complemented with short-term forecasts and real-time

monitoring to give an integrated picture of the soil and

atmosphere conditions to provide the necessary tools for

decision-makers.
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